
Jaspreet Bedi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 1), April 2014, pp.12-16

www.ijera.com 12 | P a g e

Search Based Software Engineering

Jaspreet Bedi, Kuljit Kaur
Department of Computer Science and Applications BBK DAV College for Women Amritsar, India

Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar, India

Abstract
This paper reviews the search based software engineering research and finds the major milestones in this

direction. The SBSE approach has been the topic of several surveys and reviews. Search Based Software

Engineering (SBSE) consists of the application of search-based optimization to software engineering. Using

SBSE, a software engineering task is formulated as a search problem by defining a suitable candidate solution

representation and a fitness function to differentiate between solution candidates. This paper gives an overview

of major research studies undertaken in the domain.

Index Terms—GA, SBSE, MEOA, NSGA-II and SPEA2

I. INTRODUCTION
The term Search based software engineering

was created by Harman and Jones in 2001.[7] The

field of Search Based Software Engineering (SBSE)

has grown around the need to find new ways of

heuristically selecting solutions for software

engineering problems. As software systems increase

in size and complexity, an increasing number of tasks

that are intractable to perform through manual or even

automated exhaustive means are faced. In essence, the

potential solution spaces for these problems are very

large and often exponential in nature. This includes

tasks such as generating test cases to cover specific

branches or lines of code, finding optimal sequences

of program refactoring, and reverse engineering a

program’s module structure.

Search-based software engineering (SBSE)

deals mainly with application of metaheuristic search

techniques like genetic algorithms, simulated

annealing and tabu search to software engineering

problems. Various activities in software engineering

can be formulated as optimization problems. Due to

the computational complexity of these problems,

exact optimization techniques of operations research

like linear programming or dynamic programming are

mostly impractical for large scale software

engineering problems. Because of this, researchers

and practitioners have used metaheuristic search

techniques to find near optimal or good-enough

solutions.

Broadly speaking, SBSE problems can be

divided into two types. The first is of the type black-

box optimization, for example, assigning people to

tasks (a typical combinatorial optimization problem).

With this sort of problem domain, the underlying

problem could have come from the software industry,

but equally it could have originated from any domain

where people are assigned to tasks. The second type

are white-box problems where operations on source

code need to be considered.

II. CHARACTERISTICS OF SBSE
Search-based software engineering (SBSE)

is an approach to apply metaheuristic search

techniques like genetic algorithms, simulated

annealing and tabu search to software engineering

problems. It is inspired by the observation that many

activities in software engineering can be formulated as

optimization problems. The characteristics include the

following:

a. Search space: The search space consists of

certain parameters which can be manipulated in

order to make different candidate solutions is

search space. The fitness function and search

space are the two requirements for problem

analysis when using SBSE.[7].

b. Multi objectiveness: The Search-Based Software

Engineering (SBSE) community is increasingly

recognizing the inherit “multiobjectiveness” in

Software Engineering problems.[8].

c. Optimization: Historically, the field of Search-

Based Software Engineering (SBSE) has seen a

slow adoption of Pareto optimization techniques,

generally known as multiobjective optimization

techniques. SBSE consists of search-based

optimization algorithms used in software

engineering, with genetic algorithms, genetic

programming, simulated annealing and hill

climbing being the most widely used [1]. [9]

d. Types Of Algorithms: In SBSE, heuristic

algorithms such as hill climbing or meta-heuristic

algorithms such as simulated annealing, tabu

search, genetic algorithms and ant colony

optimization are used to efficiently explore the

solution space.

RESEARCH ARTICLE OPEN ACCESS

Jaspreet Bedi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 1), April 2014, pp.12-16

www.ijera.com 13 | P a g e

e. Fitness Function: The problem analysis is guided

by a fitness function in search space which is a

measure of the quality of an individual solution.

The idea is to converge on a solution that may not

be optimal but that is good enough.

SBSE has been rapidly growing in its

presence in the software engineering literature.

According to the online SBSE repository [1] the

annual number of publications in SBSE more

than doubled between 2006 and 2010(from 60 to

almost160). This jump in the use of SBSE is an

exciting development as per authors and the

stochastic nature of these algorithms means that

individual runs of an algorithm may not be

indicative of its effectiveness. In order to obtain

reliable data and to be able to extrapolate results

to valid and meaningful conclusions, it is

essential to create carefully designed empirical

evaluations. This involves intelligent choice of

fitness function.

III. MAJOR MILESTONES
Mark Harman and bryan f. jones put forward

basic introduction of concept.[1] while S. Kanmani

and P. Maragathavalli [2]in search-based software

test data generation using evolutionary testing

techniques compared effectiveness of GA-based

testing system with a Random testing system. They

concluded that for simple programs both testing

systems work fine but as the complexity of the

program or the complexity of input domain grows,

GA-based testing system significantly outperforms

Random testing.

Mark Harman King’s College London Strand

in [3] concluded set of open problems, challenges and

areas for future work while in second paper Mark

Harman and Afshin Mansouri in [4] showed how

SBSE can be used to help predict the performance

characteristics of component-based system

assemblies. The approach uses SBSE to build models

using genetic programming, from which a behavioral

model is formed. A combination of dynamic and static

analysis is used to generate the required input for

genetic programming.

Mark Harman and Afshin Mansouri, in [6]

suggested that Software engineering is ideal for the

application of meta heuristic search techniques. Goran

Mauša et el. in article [7] presented an overview of

search based software engineering (SBSE) and

software defect prediction areas.

Abdel Salam Sayyad Hany Ammar [8]

concluded that the SBSE field has seen a trend of

adopting the Multiobjective Evolutionary

Optimization Algorithms (MEOAs) that are widely

used in other fields (such as NSGA-II and SPEA2)

without much scrutiny into the reason why one

algorithm should be preferred over the others. They

also found that the majority of published work only

tackled two-objective problems (or formulations of

problems), leaving much to be desired in terms of

exploiting the power of MEOAs to discover solutions

to intractable problems characterized by many trade-

offs and complex constraints. MelÓCinnéide and

MyraB.Cohen in [9] concluded only introduction.

Gordon Fraser Saarland and Saarbr¨ucken in

[10] presented report of the results of a large empirical

analysis carried out on 20 Java projects (for a total of

1,752 public classes). Their experiments showed with

strong statistical confidence that even for a testing tool

that is already able to achieve high coverage, the use

of appropriate seeding strategies can further improve

performance. Abdel Salam Sayyad Tim Menzies

Hany Ammar in [11] concluded that we need to

change our methods for search based software

engineering, particularly when studying complex

decision spaces.

Jeremy S. Bradbury, David Kelk and Mark

Green in [12] suggested open problems that may

benefit from combining Search-Based Software

Engineering (SBSE) techniques and software model

checking. Márcio de Oliveira Barros Arilo Claudio

Dias Neto in [13] discussed the threats to validity

along with list of full papers published in the editions

2009 and 2010 of SBSE, a proposal of questionnaire

to assess the proposed threats was included. They

conducted an analysis of 23 SBSE papers using the

proposed questionnaire and concluded that while

conclusion threats are well addressed by current

papers, the assessment of internal, external, and

construct threats can be severely improved.

G. Mauša T. Galinac Grbac , B. Dalbelo

Bašić in [14] used fitness function the closest thing

to an artifact and optimized artifacts making SBSE.

This property makes SBSE very attractive and

potentially beneficial field. They concluded that

search-based algorithms are attractive in software

engineering also due to the fact that the data in

software engineering are often inaccurate, over

dispersed and incomplete, making some traditional

optimization techniques inappropriate. Software

testing exploited the search-based algorithms more

than any other software engineering field. They

showed the basic requirements and potential

application for these algorithms in other optimization

or multi-objective problems from various software

engineering areas. Besides making use of obviously

beneficial algorithms in other unexplored areas, there

is also work to be done with the algorithms

themselves. The emerging hybrid algorithms show

very promising results and offer a potential scope for

future research. To sum up, the potential of using

SBSE is vast and still needs to be explored more

thoroughly. They concluded that unlike other

Jaspreet Bedi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 1), April 2014, pp.12-16

www.ijera.com 14 | P a g e

engineering disciplines where search-based

algorithms found application in, software engineering

is the only discipline whose artifacts are solely virtual.

Bogdan Marculescu, Robert Feldt, and

Richard Torkar in [15] proposed a search based

software testing system designed to allow domain

specialists with little software testing expertise to

develop test cases for their applications. The value of

such systems would be especially relevant for

contexts were software testing experts are not

available or where domain knowledge is the deciding

factor in the success of the testing process. Guanzhou

Lu, Rami Bahsoon and Xin Yao [16] carried out a

case study to analyze the effectiveness of the

proposed method, which is Sampling Hill Climbing

(SHC) on a variant of the Next Release Problem

(NRP). They found that if the objective function of a

software engineering problem is linearly

decomposable, it is possible to construct an

elementary landscape and apply elementary properties

to design a better algorithm for this problem. The

experimental results show that SHC incorporated with

elementary properties outperforms the initial

algorithm. Therefore we could assume that the

performance of algorithms for a particular problem

could be improved by the application of the

elementary landscape analysis. The future work will

include exploiting other elementary properties that

could be applied to the algorithms, and extending this

method to more software engineering problems.

Arash Mehrmand in [17] “A Factorial

Experiment on the Scalability of Search-Based

Software Testing Master Thesis Software

Engineering” reported on results from a factorial

experiment, where the performance GA is compared

to random testing in automation of software testing. In

this experiment, even the process of generating SUTs

were automated, which means use of GE to generate

sample Java programs. He mentioned “To my

knowledge, the presented results we had are not yet

reported in the software test data generation area,

because of having automatically generated programs,

different levels of complexity and different kinds of

coverage at the same time”.

S. Kanmani & P. Maragathavalli [18]

compared thirteen papers. They concluded that almost

in all cases, the meta-heuristic search techniques have

been implemented for the specific application for e.g.,

multi-objective NRP, Ajax web applications, triangle

classification problem, software clustering problem,

project resource allocation, signal generation, buffer

overflow problem, network security, safety, R-T tasks

and in fault prediction. In most of the combinatorial

problems, they have got better results by

implementing Evolutionary Algorithms such as GAs,

SA, TS, GP and they compared their results with the

local search such as RS, HC. The dataset used were

taken from various sources. The main quality

parameters considered are branch, path coverage,

accuracy and fitness.

Mark Harman, Joachim Wegener [19]

conducted experiments on various approaches to

search based software engineering. Andrea Arcuri,

Per Kristian Lehre and Xin Yao in [20] illustrated

how runtime analysis can be applied in SBSE and

they advocated its importance. Kiran Lakhotia, Mark

Harman, Hamilton Gross[21] in AUSTIN:A tool for

Search Based Software Testing for the C Language

and its Evaluation on Deployed Automotive Systems

developed a tool in C language.

Daniel Rodriguez, Israel Herraiz and Rachel

Harrison in “On Software Engineering Repositories

and Their Open Problems”[22] discussed the current

data repositories that are available for Software

Engineering research. They classified them and

discussed some common problems faced when

extracting information from them. They also

discussed data related problems when applying

machine learning techniques. Although some of the

problems such as outliers or noise had been

extensively studied in software engineering, others

need further research, in particular, imbalance and

data shifting from the machine learning point of view

and replicability in general, providing not only the

data but also the tools to replicate the empirical work.

Rakesh Roshan, Rabins Porwal and Chandra

Mani Sharma in “Review of Search based Techniques

in Software Testing” [23] reviewed the recent

advancements in field of Search Based Software

Testing. They concluded that area spawns an all new

domain inning in the arena of modern Software

Testing. They suggested that Search Based Software

Test has many advantages including reduced efforts

and improved reliability over state-of-the-art

approaches of Software Testing. Gabriela Ochoa, in

[24] described in the article various case studies by

applying search methodologies to challenging

problems in software engineering. The article also

described a recent research initiative: Dynamic

Adaptive Automated Software Engineering

(DAASE), whose goal is to embed optimisation into

deployed software to create self-optimising adaptive

systems.

P. Maragathavalli in [25] provided an

overview of the Search-Based Software Engineering

and the Search-Based Software Testing used in test

data generation. Phil McMinn[26] presented a preprint

of an article accepted for publication in Software

Testing. Verification and Reliability were discussed

and results were obtained for various testing areas

with many successful experiments undertaken using

real-world examples drawn from industry.

Khalid Mahmood , Shahid Kamal , Hamid

Masood Khan[27] concluded that search Based

Jaspreet Bedi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 1), April 2014, pp.12-16

www.ijera.com 15 | P a g e

Software Engineering (SBSE) is used for finding a

near optimal solution for different software activities

throughout software development life cycle. They

suggested that SBSE has been applied to problems

having static nature, but yet not applied to problems

having dynamic nature. On the other hand Swarm

Particle Intelligence techniques, such as Ant Colony

Optimization (ACO) uses ants behavior and structure

to find the real world problems, using AI technique to

SBSE dynamic search problem will probably find the

objective which yet not been achieved. Dynamic

Network Routing problem using ACO will yield this

objective. Results will be statistically and empirically

tested and compared with other competitive studies to

validate the research being proposed. Arthur I. Baars,

Kiran Lakhotia, Tanja E.J. Vos and Joachim Wegene

[28] presented an overview of Search–Based Testing

and they discussed some of the open challenges

remaining to make search–based techniques

applicable to industry as well as the Future Internet.

IV. CONCLUSION
Survey of the research papers done so far

suggests that there is a wide variety of the areas of

software engineering which are influenced by SBSE

but this is not the exhaustive list instead further

research in this direction will be a boon for

researchers and academicians

BIBLIOGRAPHY
[1] Search Based Test Data Generation Using

Evolutionary Testing Techniques,

International Journal of Software

Engineering (IJSE), Volume (1) : Issue (5)

 , S. Kanmani , P. Maragathavalli.

[2] “Search based software engineering”,

www.elsevier.com/locate/infsof, Mark

Harman,bryan f. jones

[3] “The Current State and Future of Search

Based Software Engineering”, Future of

Software Engineering(FOSE'07) 0-7695-

2829-5/07 $20.00 © 2007,IEEE,Mark

Harman King’s College London Strand,

London,WC2R 2LS United Kingdom

[4] “Search Based Software Engineering:

Introduction to the Special Issue of the IEEE

Transactions on Software Engineering”,

IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 36, NO. 6,

NOVEMBER/DECEMBER 2010. Mark

Harman and Afshin Mansouri.

[5] “Search based software engineering

Software engineering using meta heuristic

innovative search algorithms.”, Mark

Harman and Afshin Mansouri.

[6] ” A Survey on Search-Based Software

Design”.

SERIES OF PUBLICATIONS DNET PUB

LICATIONS D‐ 2009‐ 1, MARCH 2009 O

uti Räihä , University of Tampere, Finland.

[7] “Search Based Software Engineering and

Software Defect Prediction”, Goran Mauša,

mag. ing. el. University of Rijeka - Faculty

of Engineering, Vukovarska 58, HR-51000

Rijeka, Croatia.

[8] Pareto-Optimal Search-Based Software

Engineering (POSBSE): A Literature

Survey, “Abdel Salam Sayyad Hany

Ammar”, Lane Department of Computer

Science and Electrical Engineering West

Virginia University Morgantown, WV, USA

978-1-4673-6437-9/13 2013 IEEE.

[9] “Introduction to the special issue on search

based Software engineering”, Springer

Science+Business Media New York 2013

MelÓCinnéide ·MyraB.Cohen.

[10] “The Seed is Strong: Seeding Strategies in

Search-Based Software Testing”, Gordon

Fraser Saarland University – Computer

Science Saarbr¨ucken, Germany Andrea

Arcuri.

[11] “On the Value of User Preferences in

Search-Based Software Engineering: A Case

Study in Software Product Lines” 978-1-

4673-3076-3/13 2013 IEEE, ”Abdel Salam

Sayyad Tim Menzies Hany Ammar”

[12] “Effectively using Search-Based Software

Engineering Techniques within Model

Checking and Its Applications” 978-1-4673-

6284-9/13 2013 IEEE “Jeremy S. Bradbury,

David Kelk and Mark Green”,

[13] “Threats to Validity in Search-based

Software Engineering Empirical Studies”,

CENTRO DE CIÊNCIAS EXATAS E

TECNOLOGIA,” Márcio de Oliveira Barros

Arilo Claudio Dias Neto”

[14] “Overview of search-based optimization

algorithms used in software engineering”,

International Conference on Innovative

Technologies, IN-TECH 2012, Rijeka, 26 -

29.09.2012, G. Mauša , T. Galinac Grbac ,

B. Dalbelo Bašić.

[15] “A Concept for an Interactive Search-Based

Software Testing System”, A Concept for an

ISBST System, Bogdan Marculescu, Robert

Feldt, and Richard Torkar.

[16] “Applying Elementary Landscape Analysis

to Search-Based Software Engineering”,”

Guanzhou Lu, Rami Bahsoon, Xin Yao”.

[17] A Factorial Experiment on the Scalability

of Search-Based Software Testing Master

Thesis Software Engineering Thesis

Number: MSE-2009:20 June 2009 “Arash

Mehrmand”

Jaspreet Bedi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 1), April 2014, pp.12-16

www.ijera.com 16 | P a g e

[18] Search Based Software Test Data

Generation Using Evolutionary Testing

Techniques International Journal of

Software Engineering (IJSE), Volume (1):

Issue (5), S. Kanmani & P. Maragathavalli.

Thirteen papers are compared.

[19] ”Getting Results from Search–Based

Approaches to Software Engineering” Mark

Harman, Joachim Wegener Proceedings of

the 26th International Conference on

Software Engineering (ICSE’04) 0270-

5257/04 $20.00 © 2004 IEEE

[20] ” Theoretical Runtime Analysis in Search

Based Software Engineering” , Andrea

Arcuri, Per Kristian Lehre and Xin Yao.

[21] AUSTIN:A tool for Search Based Software

Testing for the C Language and its

Evaluation on Deployed Automotive

Systems Kiran Lakhotia, Mark Harman,

Hamilton Gross.

[22] “On Software Engineering Repositories and

Their Open Problems”,

http://crestweb.cs.ucl.ac.uk/resources/sbse_r

epository/ Daniel Rodriguez, Israel Herraiz

Rachel Harrison.

[23] “Review of Search based Techniques in

Software Testing” Rakesh Roshan, Rabins

Porwal,Chandra Mani Sharma International

Journal of Computer Applications (0975 –

8887) Volume 51– No.6, August 2012.

[24] “Search Methodologies in Real-world

Software Engineering”, Gabriela Ochoa,

GECCO’13 Companion, July 6–10, 2013,

Amsterdam, The Netherlands. Copyright

2013 ACM 978-1-4503-1964-5/13/07

[25] “SEARCH-BASED SOFTWARE TEST

DATA GENERATION USING

EVOLUTIONARY COMPUTATION”,

International Journal of Computer Science

& Information Technology (IJCSIT), Vol 3,

No 1, Feb 2011 DOI: 10.5121/ijcsit.2011.

3115 213. P. Maragathavalli

[26] “Search-based Software Test Data

Generation: A Survey” Phil McMinn. A

preprint of an article accepted for

publication in Software Testing Verification

and Reliability, copyright (c) Wiley 2004.

[27] “Dynamic Optimization of Network

Routing Problem through Ant Colony

Optimization (ACO)”. Khalid Mahmood ,

Shahid Kamal , Hamid Masood Khan,

Computer Engineering and Intelligent

Systems www.iiste.org ISSN 2222-1719

(Paper) ISSN 2222-2863 (Online) Vol 3,

No.8, 201260.

[28] “Search–Based Testing, the Underlying

Engine of Future Internet Testing”,Arthur I.

Baars, Kiran Lakhotia, Tanja E.J. Vos and

Joachim Wegene, Proceedings of the

Federated Conference on Computer Science

and Information Systems pp. 917–923

(ISBN 978-83-60810-22-4).

